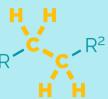
Common Functional Groups (& key UG reactions)

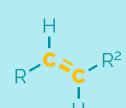
Alkane

Alkene

Alkyne

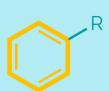

Arene

Amine


Alcohol

Alkyl halide

Thiol


radical halogenation

addition reactions

addition reactions

electrophilic aromatic substitution

base & nucleophilic (substitution/ addition to C=O)

nucleophile & leaving group in strong acid

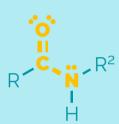
leaving group in substitution & eliminations

nucleophile & radical reactions

Aldehyde

nucleophilic addition

Ketone


nucleophilic addition

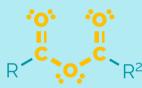
Carboxylic

acid & acyl substitution

Amide

acyl substitution

Ester


acyl substitution

Acyl halide

acyl substitution

Anhydride

acyl substitution

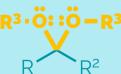
Nitro

reduction & deprotonation

Ether

nothing interesting

Sulfide


oxidation

oxidation & reduction

Acetal

hydrolysis

Imine

nucleophilic addition & hydrolysis

Nitrile

reduction & hydrolysis

Conclusion

- These are the common functional groups (the first group are the most important).
- There are many more but these should get you through.
- Functional groups allow us to predict the properties of a molecule but are no substitute for understanding electron distribution & how it influences reactivity.

This work is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/