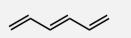
Aromatic molecules

1. Introduction

Aromatic molecules are a distinct class of compound with unique reactivity. Defined by a delocalised loop of π electrons around the aromatic ring. which imparts greater stability than we might predict. This stability is often called aromatic or resonance stabilisation.

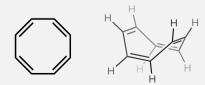


2. Rules for aromaticity

Not all molecules that have a ring of delocalised π electrons are aromatic. To be classed as aromatic a molecule must fulfil a number of criteria:

i. It must be cyclic (& planar)

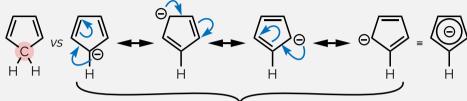
A ring is easy to spot (compare hexatriene and benzene).



non-aromatic not a ring

aromatic cyclic & ...

It must be flat so that the p orbitals can overlap and allow delocalisation.

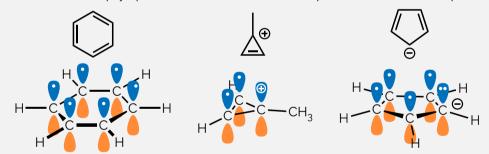


not **anti-aromatic** non-planar

2b. Rules for aromaticity

ii. The molecule must have an unbroken ring of π electrons

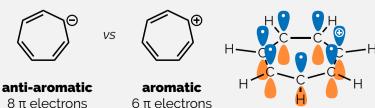
There must be a circle of conjugated π bonds and/or p orbitals. It must be possible to draw a series of resonance structures that show the π electrons are in a ring.


non-aromatic

no rina of π electrons

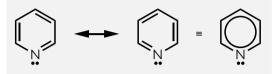
aromatic

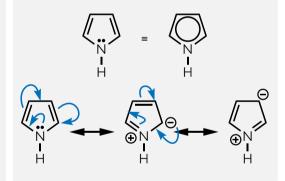
rina of π electrons


There must be a continuous ring of overlapping 2p orbitals made up of 2p orbitals of a π bond, an empty 2p orbital of a cation, or a lone pair of electrons in a 2p orbital.

2c. Rules for aromaticity

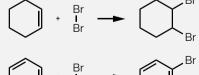
iii. The molecule must have the correct number of electrons

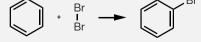

The number of π electrons in a delocalised ring must be a Hückel number, 4n+2 (n = whole number), which is the same as an odd number of pairs of π electrons. An **anti**aromatic compound obeys criteria i & ii but not iii.



3. Heteroaromatics

Aromatic rings can contain heteroatoms. The heteroatom can be part of a π bond leaving its lone pair free to react:




Or the lone pair of the heteroatom contributes to the ring of π electrons. It is not free to react in a chemical reaction:

4. Conclusion

Aromatic molecules have a ring of delocalised π electrons. They will be described by multiple resonance structures. This makes them unusually stable, and leads to unique reactivity.