Valence bond theory \& hybrid atomic orbitals

5. Flow chart to determine valence bond model

2. Hybridisation

The hybridisation of an atom is given by:

\#atoms attached * \#lone pairs

$$
\text { The total will be between } 4 \& 2
$$

$$
4=s p^{3} ; 3=s p^{2} ; 2=s p
$$

If an atom has a lone pair of electrons \& it is adjacent to a π bond it will be $s p^{2}$. These rules are a simplification!

Valence bond theory provides another representation of a molecule. In organic chemistry, it marries the simplicity of line diagrams to the accuracy of molecular orbital theory.
It is a useful compromise that allows the construction of orbital representations without computers.

3. Hybrid atomic orbitals (HAO)

sp ${ }^{3}$ hybrid

Four HAOs made from the $2 s \& 3 \times 2 p$. The $s p^{3} \mathrm{HAOs}$ point to the corners of a tetrahedron with separation of 109°

$\boldsymbol{s p}^{2}$ hybrid Three HAO made from the $2 s \& 2 \times 2 p$. The $s p^{2} \mathrm{HOAs}$ point to the corners of a triangle. There is a nonhybridised $2 p$ orbital at 90°

sp hybrid
Two HAOs ($2 s+1 \times 2 p$). The sp HAOs are linear, 180° a part. There are two nonhybridised $2 p$ orbitals 90° to each other \& sp HAO

There two kinds of bond:
$\boldsymbol{\sigma}$ bonds - formed from the head-to-head overlap of hybrid atomic orbitals (or HAO and the 1 s atomic orbital of hydrogen)
$\boldsymbol{\pi}$ bonds - formed from the side-to-side overlap of $2 p$ atomic orbitals.
π bonds are weaker than o bonds as poorer overlap.

$$
\begin{aligned}
& \text { join atoms } \\
& \text { with } \sigma \text { bonds }
\end{aligned}
$$

add lone pairs into
 HAO (unless delocalised)

